If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x^2=199
We move all terms to the left:
x+x^2-(199)=0
a = 1; b = 1; c = -199;
Δ = b2-4ac
Δ = 12-4·1·(-199)
Δ = 797
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{797}}{2*1}=\frac{-1-\sqrt{797}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{797}}{2*1}=\frac{-1+\sqrt{797}}{2} $
| 4(2n-7=12 | | 3(2x+6)=2×+4+4x | | 7x+7=4-(9x-8) | | x+(x-14)=20 | | 10x-3/12=2 | | 2(4x+2)-2(x-2)=-(2x+12) | | 4z/9-4=-6 | | 18x+6=-30 | | 20x+6=-14 | | 58-4v=5v+4 | | 70/100=100/x | | 5x+18+2x=38+42 | | z/7-5=10 | | 3(x-6)-5x=-38 | | 7s-24=60 | | 18=4(y+8)-6y | | 12=-5x+8 | | 27/2b+3=3 | | a/4+4=12 | | 7(v-7)-2v=1 | | 68/4g+2=2 | | -(2a-6)=5(1+8a)+5 | | 80/4t+4=2 | | 2u+5(u+2)=-32 | | 3(4u+3)-3(u+2)=93 | | 3(3f+6)-2(f+4)=59 | | -34=x+(-40) | | 3(4c+7)-2(c+4)=53 | | 3+2(8-3x)=5x+1 | | 9x-6=6x+24 | | 11x-2=5x+46 | | 22=60|y+2 |